论文笔记 -- HRNet

2020/07/28 PaperNotes ObjectDetection PoseEstimation 共 4408 字,约 13 分钟

Deep High-Resolution Representation Learning for Visual Recognition (CVPR2019)

Abstract

本文提出 High-Resolution Network (HRNet),不同于以往的“高分辨率-卷积网络编码为低分辨率-恢复为高分辨率”,而是在模型中保持高分辨率。HRNet 有以下两种特性:(i) Connect the high-to-low resolution convolution streams in parallel; (ii) Repeatedly exchange the information across resolutions。这样做的好处是通过高分辨率保留了更多的语义信息(semantically richer and spatially more precise)。本工作在 human pose estimation, semantic segmentation, 和 object detection 均实现了 SOTA。

1. INTRODUCTION

Fig. 1 是常见的“高分辨率-低分辨率-高分辨率”模型结构。Fig. 2 是HRNet。

涨点的两个方面:

  • Connect the high-to-low resolution convolution streams in parallel:不像U-Net 一样是U型架构,本工作一直保持高分辨率的 feature map,让特征提取并行进行。高分辨率特征图意味着更多的语义信息。
  • Repeatedly exchange the information across resolutions:对于不同分辨率的特征图采用 multi-resolution fusion 的方式,从而交互各级语义信息。

提供了 HRNet 的两个版本:

  • HRNet-V1: 只输出高分辨率特征图输出(Fig 2 第一行),应用在了COCO关键点检测任务中。

    We empirically demonstrate the superior pose estimation performance on the COCO keypoint detection dataset.

  • HRNet-V2: combines the representations from all the high-to-low resolution parallel streams. 各分辨率下所有特征图输出(Fig 2 全部),应用在了各语义分割任务。

    The proposed approach achieves state-of-the-art results on PASCAL-Context, Cityscapes, and LIP with similar model sizes and lower computation complexity.

第七章消融实验证明了 HRNet-V2 结果远超过 HRNet-V1。

另外,还提供了一个版本 HRNet-V2p,其实就是只输出 HRNet-V2 高分辨率特征图输出,作为其它算法(state-of-the-art detection frameworks, including Faster R-CNN, Cascade R-CNN [12], FCOS [136], and CenterNet [36], and state-of-the-art joint detection and instance segmentation frameworks, including Mask R-CNN [53], Cascade Mask R-CNN, and Hybrid Task Cascade [16].)的 backbone architecture。

实验结果:

  • We observe similar performance for HRNet-V1 and HRNet-V2 over COCO pose estimation, and the superiority of HRNet-V2 to HRNet-V1 in semantic segmentation.

    我的问题:为什么在COCO上差别不大但是语义分割上差别较大呢?

  • The results show that HRNet-V2p gets detection performance improvement and in particular dramatic improvement for small objects.

2. RELATED WORK (略)

  • low-resolution representation learning

  • high-resolution representation recovering

  • high-resolution representation maintaining

  • multi-scale fusion

3. HIGH -RESOLUTION NETWORKS

3.1 Parallel Multi-Resolution Convolutions

\[N_{sr}:= \text{a sub-stream in the } s \text{ th stage and } r \text{ is the resolution index}\]

resolution index 和 resolution 的关系是: \(\frac{1}{2^{r-1}}\)

3.2 Repeated Multi-Resolution Fusions

通过 stride 下采样,通过双线性上采样。

3.3 Representation Head

3.4 Instantiation/Implementation (略)

3.5 Analysis

(a) 的并行类似分组卷积。除了参数量降低以及提高并行化以外,分组卷积的优势在于精度的提升,https://blog.yani.io/filter-group-tutorial/ 该博客通过实验证明 「过滤器组 (filter group) 的作用就是学习通道维度上的块对角结构的稀疏性。 (The effect of filter groups is to learn with a block-diagonal structured sparsity on the channel dimension.) 在对过滤器进行了分组的网络中,高相关性的过滤器以更结构化的方式学习。(As can be seen in the correlation images, the filters with high correlation are learned in a more structured way in the networks with filter groups. In effect, filter relationships that don’t have to be learned are no longer parameterized.) 结果,不要求学习的过滤器关系也不再需要用参数进行表示,这就显著减少了网络中的参数数量,并且在减少参数的过程中不容易过度拟合,因此这种类似正则化的效果可以让优化器学习更准确、更有效的深度网络。」

那么我们是否可以认为 HRNet 中为不同分辨率设计的并行 path 也隐含这样的分组思想呢?个人认为大可不必。如果这样做完全OK的话为什么在每个阶段末还要设计 fusion 的环节呢?

(b) 的融合类似传统2D卷积(如图c)。

4. HUMAN POSE ESTIMATION (实验略)

5. SEMANTIC SEGMENTATION (实验略)

6. COCO OBJECT DETECTION (实验略)

7. ABLATION STUDY

Representations of different resolutions: The resolution does impact the keypoint prediction quality.

Repeated multi-resolution fusion

  1. 首先消融实验了fusion对精度的影响: (a) W/o intermediate fusion units (1 fusion): There is no fusion between multi-resolution streams except the final fusion unit. (b) W/ across-stage fusion units (3 fusions): There is no fusion between parallel streams within each stage. (c) W/ both across-stage and within-stage fusion units (totally 8 fusions): This is our proposed method.

  2. 其次消融实验了fusion的另外两种可能方案: (i) use bilinear downsample to replace strided convolutions; (ii) use the multiplication operation to replace the sum operation.

    In the former case, the COCO pose estimation AP score and the Cityscapes segmentation mIoU score are reduced to 72.6 and 74.2 . The reason is that downsampling reduces the volume size (width × height × #channels) of the representation maps, and strided convolutions learn better volume size reduction than bilinear downsampling.

    In the later case, the results are much worse: 54.7 and 66.0, respectively. The possible reason might be that multiplication increases the training difficulty as pointed in [145].

Resolution maintenance

Fig. 2 是本工作提出的网络结构,与此对应的消融实验网络结构是: 保证 fusion 位置相同,但是 all the four high-to-low resolution streams are added at the beginning and the depths of the four streams are the same (也就是说不是这种 hierarchical architecture, 而是四条相同长度的 paralleled path)。

在确保 FLOPs 和参数量差距不大的条件下,对两个模型 train-from-scratch,Fig. 2 在 COCO 验证集的精度更高。作者给出的理由是 the low-level features extracted from the early stages over the low-resolution streams are less helpful.

8. CONCLUSIONS

在 MXNet 开发框架内,HRNet 的 memory cost 与 SOTA 模型相比差距不大。

文档信息

Search

    Table of Contents