VALSE2020重要主题年度进展回顾一:模型压缩,图神经网络,场景文字检测与识别,元学习

2020/08/13 VALSE2020 共 782 字,约 3 分钟

VALSE2020 重要主题年度进展回顾 (APR)

模型压缩

  1. Rethinking Network Pruning
    • Lottery Ticket Hypothesis
    • Rethinking the Value of Network Pruning
      • pruning is an architecture search paradigm
    • Pruning from Scratch (AAAI2020)
  2. Data-free Compression
    • Data-free Learning of Student Networks (ICCV2019)
      • GAN 生成训练样本
    • Post trainning 4-bit quentization of concolutional networks for rapid-deployment (NIPS2019)
    • Towards accurate post-training network quantization via bit-split stitching (ICML2020)
  3. NAS for compact networks

  4. NLP compression

  1. Hardware-software Co-design

图神经网络

GNN 满足置换不变性,好处是同构的两个节点对应的 topology representation 是一样的。坏处是如果同构的两个节点对应的label不同,这就超出了GNN的表达能力。

Deep GNN 训练存在问题,在图像数据集下有涨点,但是在更general graph setting的数据集下没有performance boost。


场景文字检测与识别

场景文字检测

场景文字识别

端到端场景文字识别

未来展望


元学习

元学习方法论

元学习技术应用

  1. few-shot learning
  2. NAS
  3. hyper-parameter learning
  4. continual learning
  5. domain generalization
  6. learning with bias data

文档信息

Search

    Table of Contents