VALSE2020 重要主题年度进展回顾 (APR)
模型压缩
- Rethinking Network Pruning
- Lottery Ticket Hypothesis
- Rethinking the Value of Network Pruning
- pruning is an architecture search paradigm
- Pruning from Scratch (AAAI2020)
- Data-free Compression
- Data-free Learning of Student Networks (ICCV2019)
- GAN 生成训练样本
- Post trainning 4-bit quentization of concolutional networks for rapid-deployment (NIPS2019)
- Towards accurate post-training network quantization via bit-split stitching (ICML2020)
- Data-free Learning of Student Networks (ICCV2019)
NAS for compact networks
- NLP compression

- Hardware-software Co-design
图神经网络







GNN 满足置换不变性,好处是同构的两个节点对应的 topology representation 是一样的。坏处是如果同构的两个节点对应的label不同,这就超出了GNN的表达能力。

Deep GNN 训练存在问题,在图像数据集下有涨点,但是在更general graph setting的数据集下没有performance boost。




场景文字检测与识别

场景文字检测













场景文字识别














端到端场景文字识别







未来展望




元学习
元学习方法论






元学习技术应用
- few-shot learning
- NAS
- hyper-parameter learning
- continual learning
- domain generalization
- learning with bias data













